the dev environment with systemd-nspawn

posts
Author

drindr

Published

August 24, 2024

background

I am an Arch user motivated by its super active community. However, many stuff in academy or industry extremely those about Robotics are designed for the Ubuntu. The ROS AUR package is out-of-date. It is difficult to maintain a package with so many dependencies. Furthermore, many libraries about pointcloud processing and navigation are developed under ubuntu, which means developers of those libs only maintain for Ubuntu usually.

create Ubuntu environment

  1. debootstrap
paru -S debootstrap
  1. To manage the container with machinectl, create the Ubuntu environment in the /var/lib/machines/ with root permission.
debootstrap --include=dbus,systemd-container --components=main,universe,multiverse jammy jammy https://mirrors.tuna.tsinghua.edu.cn/ubuntu
  1. Enter the container with systemd-nspawn -D jammy
  2. The network of Ubuntu might be broken now.
    • configure systemd-resolved. Edit the /etc/systemd/resolved.conf DNS line DNS=8.8.8.8
    • (optionally) configure DNS manually
    sudo systemctl disable --now systemd-resolved
    echo 'nameserver 8.8.8.8' > /etc/resolv.conf

At first, I tried podman(docker) for a period of time. I think they are so heavy. I don’t care about the image, I just require a container that can run Ubuntu and the faster the better. I don’t mind the dirty directories. That’s why I choose systemd-nspawn in the end

passthrough Nvidia GPU

Another requirement is the discrete Nvidia gpu on my laptop, some of the development using CUDA. ArchWiki Systemd-nspawn#Nvidia_GPUs Create file /etc/systemd/system/systemd-nspawn@.service.d/nvidia-gpu.conf

[Service]
ExecStart=
ExecStart=systemd-nspawn --quiet --keep-unit --boot --link-journal=try-guest --machine=%i \
--bind=/dev/dri \
--bind=/dev/shm \
--bind=/dev/nvidia0 \
--bind=/dev/nvidiactl \
--bind=/dev/nvidia-modeset \
--bind=/usr/bin/nvidia-bug-report.sh:/usr/bin/nvidia-bug-report.sh \
--bind=/usr/bin/nvidia-cuda-mps-control:/usr/bin/nvidia-cuda-mps-control \
--bind=/usr/bin/nvidia-cuda-mps-server:/usr/bin/nvidia-cuda-mps-server \
--bind=/usr/bin/nvidia-debugdump:/usr/bin/nvidia-debugdump \
--bind=/usr/bin/nvidia-modprobe:/usr/bin/nvidia-modprobe \
--bind=/usr/bin/nvidia-ngx-updater:/usr/bin/nvidia-ngx-updater \
--bind=/usr/bin/nvidia-persistenced:/usr/bin/nvidia-persistenced \
--bind=/usr/bin/nvidia-powerd:/usr/bin/nvidia-powerd \
--bind=/usr/bin/nvidia-sleep.sh:/usr/bin/nvidia-sleep.sh \
--bind=/usr/bin/nvidia-smi:/usr/bin/nvidia-smi \
--bind=/usr/bin/nvidia-xconfig:/usr/bin/nvidia-xconfig \
--bind=/usr/lib/gbm/nvidia-drm_gbm.so:/usr/lib/x86_64-linux-gnu/gbm/nvidia-drm_gbm.so \
--bind=/usr/lib/libEGL_nvidia.so:/usr/lib/x86_64-linux-gnu/libEGL_nvidia.so \
--bind=/usr/lib/libGLESv1_CM_nvidia.so:/usr/lib/x86_64-linux-gnu/libGLESv1_CM_nvidia.so \
--bind=/usr/lib/libGLESv2_nvidia.so:/usr/lib/x86_64-linux-gnu/libGLESv2_nvidia.so \
--bind=/usr/lib/libGLX_nvidia.so:/usr/lib/x86_64-linux-gnu/libGLX_nvidia.so \
--bind=/usr/lib/libcuda.so:/usr/lib/x86_64-linux-gnu/libcuda.so \
--bind=/usr/lib/libnvcuvid.so:/usr/lib/x86_64-linux-gnu/libnvcuvid.so \
--bind=/usr/lib/libnvidia-allocator.so:/usr/lib/x86_64-linux-gnu/libnvidia-allocator.so \
--bind=/usr/lib/libnvidia-cfg.so:/usr/lib/x86_64-linux-gnu/libnvidia-cfg.so \
--bind=/usr/lib/libnvidia-egl-gbm.so:/usr/lib/x86_64-linux-gnu/libnvidia-egl-gbm.so \
--bind=/usr/lib/libnvidia-eglcore.so:/usr/lib/x86_64-linux-gnu/libnvidia-eglcore.so \
--bind=/usr/lib/libnvidia-encode.so:/usr/lib/x86_64-linux-gnu/libnvidia-encode.so \
--bind=/usr/lib/libnvidia-fbc.so:/usr/lib/x86_64-linux-gnu/libnvidia-fbc.so \
--bind=/usr/lib/libnvidia-glcore.so:/usr/lib/x86_64-linux-gnu/libnvidia-glcore.so \
--bind=/usr/lib/libnvidia-glsi.so:/usr/lib/x86_64-linux-gnu/libnvidia-glsi.so \
--bind=/usr/lib/libnvidia-glvkspirv.so:/usr/lib/x86_64-linux-gnu/libnvidia-glvkspirv.so \
--bind=/usr/lib/libnvidia-ml.so:/usr/lib/x86_64-linux-gnu/libnvidia-ml.so \
--bind=/usr/lib/libnvidia-ngx.so:/usr/lib/x86_64-linux-gnu/libnvidia-ngx.so \
--bind=/usr/lib/libnvidia-opticalflow.so:/usr/lib/x86_64-linux-gnu/libnvidia-opticalflow.so \
--bind=/usr/lib/libnvidia-ptxjitcompiler.so:/usr/lib/x86_64-linux-gnu/libnvidia-ptxjitcompiler.so \
--bind=/usr/lib/libnvidia-rtcore.so:/usr/lib/x86_64-linux-gnu/libnvidia-rtcore.so \
--bind=/usr/lib/libnvidia-tls.so:/usr/lib/x86_64-linux-gnu/libnvidia-tls.so \
# not exist in my machine. --bind=/usr/lib/libnvidia-vulkan-producer.so:/usr/lib/x86_64-linux-gnu/libnvidia-vulkan-producer.so \
--bind=/usr/lib/libnvoptix.so:/usr/lib/x86_64-linux-gnu/libnvoptix.so \
--bind=/usr/lib/modprobe.d/nvidia-utils.conf:/usr/lib/x86_64-linux-gnu/modprobe.d/nvidia-utils.conf \
--bind=/usr/lib/nvidia/wine/_nvngx.dll:/usr/lib/x86_64-linux-gnu/nvidia/wine/_nvngx.dll \
--bind=/usr/lib/nvidia/wine/nvngx.dll:/usr/lib/x86_64-linux-gnu/nvidia/wine/nvngx.dll \
--bind=/usr/lib/nvidia/xorg/libglxserver_nvidia.so:/usr/lib/x86_64-linux-gnu/nvidia/xorg/libglxserver_nvidia.so \
--bind=/usr/lib/vdpau/libvdpau_nvidia.so:/usr/lib/x86_64-linux-gnu/vdpau/libvdpau_nvidia.so \
--bind=/usr/lib/xorg/modules/drivers/nvidia_drv.so:/usr/lib/x86_64-linux-gnu/xorg/modules/drivers/nvidia_drv.so \
--bind=/usr/share/X11/xorg.conf.d/10-nvidia-drm-outputclass.conf:/usr/share/X11/xorg.conf.d/10-nvidia-drm-outputclass.conf \
--bind=/usr/share/dbus-1/system.d/nvidia-dbus.conf:/usr/share/dbus-1/system.d/nvidia-dbus.conf \
--bind=/usr/share/egl/egl_external_platform.d/15_nvidia_gbm.json:/usr/share/egl/egl_external_platform.d/15_nvidia_gbm.json \
--bind=/usr/share/glvnd/egl_vendor.d/10_nvidia.json:/usr/share/glvnd/egl_vendor.d/10_nvidia.json \
--bind=/usr/share/licenses/nvidia-utils/LICENSE:/usr/share/licenses/nvidia-utils/LICENSE \
--bind=/usr/share/vulkan/icd.d/nvidia_icd.json:/usr/share/vulkan/icd.d/nvidia_icd.json \
--bind=/usr/share/vulkan/implicit_layer.d/nvidia_layers.json:/usr/share/vulkan/implicit_layer.d/nvidia_layers.json \
DeviceAllow=/dev/dri rw
DeviceAllow=/dev/shm rw
DeviceAllow=/dev/nvidia0 rw
DeviceAllow=/dev/nvidiactl rw
DeviceAllow=/dev/nvidia-modeset rw

usage

sudo machinectl start jammy
sudo machinectl poweroff jammy
sudo machinectl enable jammy # auto-start

install package

  • update modify /etc/apt/source.list, add jammy-updates and jammy-backports
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy-updates main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy-backports main restricted universe multiverse
then, 
sudo apt update
  • cuda
    according to this, we just need to install the required cuda-toolkit in the container regardless the cuda in the host Arch.
    following Nvidia’s instruction install the specific version of cuda-toolkit.

  • ros
    just following the ROS wiki everything will work correctly.

GUI

Using Wayland, to use GUI, just let the DISPLAY env in the container equal to its value in the host without binding anything specifically.

at least it runs well on my machine

export DISPLAY=:1

reference

https://wiki.archlinux.org/title/Systemd-nspawn
https://www.kxxt.dev/blog/systemd-nspawn-container-for-ros